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DNA microarrays are important devices for high throughput mea-
surements of gene expression, but no rational foundation has been
established for understanding the sources of within-chip statistical
error. We designed a specialized chip and protocol to investigate
the distribution and magnitude of within-chip errors and discov-
ered that, as expected from theoretical expectations, measurement
errors follow a Lorentzian-like distribution, which explains the
widely observed but unexplained ill-reproducibility in microarray
data. Using this specially designed chip, we examined a data set of
repeated measurements to extract estimates of the distribution
and magnitude of statistical errors in DNA microarray measure-
ments. Using the common “’ratio of medians’’ method, we find that
the measurements follow a Lorentzian-like distribution, which is
problematic for subsequent analysis. We show that a method of
analysis dubbed “median of ratios” yields a more Gaussian-like
distribution of errors. Finally, we show that the bootstrap algo-
rithm can be used to extract the best estimates of the error in the
measurement. Quantifying the statistical error in such measure-
ments has important applications for estimating significance lev-
els, clustering algorithms, and process optimization.

Any measurement is only an estimate of a physical value, but
to be useful the measurement should be accompanied by an
estimate of the error. The error in a single measurement can be
estimated by examining a histogram of many independently
repeated measurements. Typically, a histogram of many mea-
surements will form a normal (i.e., Gaussian) distribution whose
mean value is taken as the best estimate of the true value. The
standard deviation of this distribution is an estimate of the error
in a single measurement.

The measurement of ratios poses special statistical problems.
The distribution of the ratio x/y of two Gaussian random
variables x and y is not necessarily Gaussian. In the case of noisy
measurements, where the standard deviation is a significant
fraction of the measured value, the distribution of the ratio
approaches a Lorentzian or Cauchy distribution (1). In the case
of non-noisy measurement, where the standard deviation is a
small fraction of the mean, the distribution of the ratio will follow
a Gaussian distribution. Loosely speaking, Lorentzian distribu-
tions have longer tails than Gaussian distributions. This means
that points sampled from a Lorentzian distribution will have
more frequent “outliers” than points sampled from a similar
Gaussian distribution. The mean, standard deviation, and higher
moments of the Lorentzian distribution are undefined. The
measurement of ratios can give wide tails and nonsensical error
estimates unless the data are handled properly. Thus, one needs
to turn to other statistical tools for measurement and error
estimates rather than the mean and standard error in the mean.

To examine the statistical reliability of measurements from
DNA microarrays, we examined microarrays with multiply re-
peated spots and looked at differences in the measured values.
We analyzed data from experiments that measure a large
number (1,152) of mRNAs four different times on a single slide.
When the ratio measurements are extracted using one common
method [the ratio of medians (2)], the distribution of deviations
follow a Lorentzian-like distribution rather than a normal
(Gaussian) distribution. When we re-analyzed the data by using
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amodified algorithm (median of ratios), the distribution became
more Gaussian-like and we obtained more consistent results.

We describe a method for estimating the error in the measured
ratio by using the bootstrap method (3). The bootstrap is an
algorithm used to estimate confidence intervals of an arbitrary
parameter estimated from a population of measurements. It does
this by repeatedly randomly sampling from the population and
calculating the parameter of interest. We evaluated this method
of error estimation by comparing the actual differences in
multiple measurements of the ratio (the median of the ratios) to
the estimated error for a single measurement. There is good
agreement between the two, leading us to conclude that the
bootstrap can give reliable error estimates.

Methods

A test slide was constructed containing 100 spots representing
cDNA cloned from mouse glycerol-3-phosphate dehydrogenase
(G3PDH). The series of spots were from a single preparation of
cDNA. Arrays were hybridized to mRNA from C2C12 and
10T1/2 cell lines. Results are shown in Fig. 1; all 100 points are
represented.

A 4,608 spot DNA microarray representing 1,152 mouse genes
each repeated four times was constructed. mRNA was extracted
from a whole adult mouse liver (Cy5) and a C2C12 mouse
myoblast cell line (Cy3) and hybridized to the microarray. The
slide was scanned and spots were grouped by the cDNA clone
they represent.

The commonly used measure of signal is the log, transform of
the ratio of medians. The ratio of medians is defined as “the ratio
of the median intensities of each feature for each wavelength,
with the median background subtracted.” We found that the
median of ratios, defined as “the median of pixel-by-pixel ratios
of pixel intensities, with the median background subtracted,”
provided a more consistent measurement.

A scatter plot, presented in Fig. 2, was constructed by taking
all possible pairs of measurements and plotting them against
each other. Points which had background values greater than
foreground values in either the Cy3 or Cy5 channel were
excluded from the analysis. The ratios were transformed by
taking the log, and normalized. Values are reported in Fig. 2.
Numbers were extracted from the image by using GENEPIX
software (Axon Instruments, Foster City, CA).

We used a computer algorithm to calculate the bootstrap
median and confidence levels in the median. The bootstrap
algorithm works as follows. A list of measured ratios, one from
each pixel in a spot, was compiled. A new list was created by
sampling (with replacement) from this list. The median value of
the new list was computed and recorded on a list of medians. This
procedure was repeated as many times as there were pixels in the
spot. The mean and 90% confidence interval in the mean was
computed from the list of medians. In the bootstrap algorithm,
these represent the best estimate of the median and 90%
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Fig. 1. Repeated measurements using a DNA microarray of the level of

glycerol-3-phosphate dehydrogenase (G3PDH) in C2C12 myoblast cells and
10T1/2 fibroblasts (100 measurements). There is a large variation in the
"quality”” of each individual spot, but the ratio is consistent.

confidence level of the estimate. This is reported in Table 1 and
shown graphically in Fig. 3.

Results

The Efficiency of Hybridization on DNA Spots Varies Over a Wide
Range. This has been known since the first paper on spotted DNA
microarrays (4, 5); we reproduce it here to show the magnitude
of the variation. The wide variation requires the use of an
internal control on each DNA spot. The control and sample are
labeled with different fluorophores and the ratio of intensities
between the sample and control is reported. As is shown in Fig.
1, the ratio between the two measurements is considerably more
consistent than the absolute intensity of either one.

Measurements Extracted from Images of DNA Microarrays by Using
the Commonly Accepted Methods (Ratio of Medians) Follow a Lorent-
zian-Like Distribution. Our measurements on 1,152 different genes
repeated four times show that the measured values follow a
Lorentzian-like distribution. Measurements extracted using the
ratio of means algorithm give similar results. This indicates that
approximately one in five of the genes that appear to have
significant changes in expression level do not; they are statistical
outliers that are an artifact of the data analysis method.

Measurements Extracted from Images by Using the Median of Pixel-
by-Pixel Ratios Follow a Gaussian-Like Distribution. By examining a
population of pixel-by-pixel ratio measurements at each spot and
selecting the median of the population, the distribution of
deviations follows a Gaussian distribution, with a significantly
smaller width (see Fig. 4).

The Error on an Individual Spot Can Be Estimated by Using the
Bootstrap Algorithm on the Ratios of Individual Pixels Within a Spot.
Confidence levels (90%) in the median for each spot were
estimated using the bootstrap algorithm. These errors agreed
well with the observed spread in measurements across different
spots that contained the same DNA (see Fig. 3).

Discussion

DNA microarray measurements are typically made in two colors
(using the fluorophores Cy3 and CyS5), where one color corre-
sponds to a control and the other is the value of interest. For
technical reasons (2), the measured value is reported as the ratio
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Fig. 2. A scatter plot of the data collected from the 4 X 1,152 dataset. Each

point represents a pair of different measurements of the same physical value.
Ideally, all points should fall on the diagonal line indicating exact reproduc-
ibility. The extent to which points are spread from the line gives an indication
of the statistical errors in the measurements. Both sets of data arise from the
same slide and scan. For each gene, there are as many as 12 points plotted on
this graph. The plotted points are intrinsically symmetric across the diagonal
line because a pair of points is plotted as both (x, y) and (y, x). (a) Numbers are
extracted from the image by using the median of ratios method. (b) Numbers
are extracted with the ratio of medians method.

of the two channels, usually the logarithm (base 2, by conven-
tion) of the ratio. By taking the logarithm, equal changes in
up/down concentrations are represented by equal numerical
values.

The distribution of the ratio x/y of two correlated normal
random variables has been solved (1). It is a function of five
parameters: the meansX, y, standard deviations oy, o, of both the
numerator and denominator, and the correlation coefficient p
between the numerator and denominator. In the limit that the
standard deviations are much greater than the means, o, >> X
and o, >> y the distribution is exactly equal to a Lorentzian
distribution. (For instance, when x and y are normally distributed
andx = 0 andy = 0, the distribution of x/y is exactly Lorentzian.)

The experimental distributions we examined were found to
approximately follow the log-transformed Lorentz distribution,
as expected for a ratio of two noisy measurements. The Lorentz
distribution can be written as,
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Table 1. An example of using the bootstrap algorithm for error estimation

Measurement
Accession Cy3 Cy5 1 2 3 4
W14393 2,700 2,100 1.15 = 0.11 1.37 £ 0.14 1.21 £ 0.05 1.30 = 0.06
W09867 2,900 50 54 +8 68 = 14 69 = 11 55+ 6
W34179 150 35 3.8+ 1.8 29+1.9 32+09 33+0.8

Data from three different genes each spotted four times onto a single slide is shown (represented by the
Genbank accession identifier of the sequence). For each gene, an approximate background subtracted Cy3 and
Cy5 level is shown in relative fluorescence units. In addition, the median value of the pixel-by-pixel ratio and
standard error (90% confidence interval) of the median as reported by the bootstrap algorithm is given for each
of the four different spots. The genes were chosen to represent a “bright yellow” (bright in both channels,
W14393), “bright green’” (bright in a single channel, W09867), and a dim spot (W34179). The calculation of errors
for each spot is independent of the other three. The spread in the four measurements for each gene is consistent
with the error, demonstrating the utility of the algorithm.

a b

pL(x):;(x—xo)z-i-bz’

[1]
and the log transformed equivalent of the Lorentz distribution
is obtained by using the fundamental law of probabilities

a

pu) = 2 cosh(px — xo|/b)’ 21
where a is a normalization constant that only depends on the
total number of points measured and b is the half width at half
maximum of the curve, a measure of the width of the distribution
or overall reproducibility of the experiment. We observed the
Lorentz distribution in data taken in our laboratory and analyzed
with the ratio of medians.

In DNA microarray experiments, the experimental quantity of
interest is the ratio. More accurate measurements can be ob-
tained by making a large number of independent measurements
of the ratio and computing the median of the measurements.
Because the measurements are drawn from a Lorentzian-like
distribution whose mean is undefined, the median is the appro-
priate measure of the central value. Computing the mean value
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Fig. 3. Repeated measurements of three different genes with bootstrap
error bars. The line indicates the mean value of the four measurements for
each gene. The error bars indicate 90% confidence intervals in the median
value of the pixels in the spot. The error bars are estimated by using the
bootstrap on the population of pixels. The average coefficient of variation for
the measurements was approximately W14393:7%, W09867:15%, and
W34179:40%. More precise measurements of the ratio can be made on
abundant transcripts.
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and/or the standard deviation of the population will result in
meaningless values, because the determination of the values will
be dominated by the outliers of the measurements and will not
be reproducible.

Independent measurements of the ratio can be made by
repeated spotting of the same DNAs, but this takes up valuable
area on the chip. If the dominant source of variation in the
relative values occurs within a spot (as well as between spots),
then a single spot can be subdivided into smaller independent
areas (pixels), and the ratio for each one of these pixels could be
computed (median of ratios). The median and standard error of
the median can be calculated from this population of pixels
within a single spot.

When we reanalyzed the data by using the “median of ratios”
algorithm, we found the data followed the Gaussian distribution,

a (x — x0)? 3
X) = exXp —
Palx) \/%b p p2 [3]
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Fig.4. A histogram of distances to the diagonal line from Fig. 2 (differences

from repeated DNA microarray measurements). The curves are fit to log
Gaussian, Eq. 4 (taller curve for the median of ratios), and log Lorentzian, Eq.
2 (wider curve for the ratio of medians), functions. Both curves were extracted
from the same experimental data. There is an excess of points at 0 in the ratios
of medians curve due to digitization of the measurements. The fit to the
median of ratios curve is substantially under estimating the data at the
transition from the base to the peak. The median of ratios has 3% of the points
outside the range of —1to 1, and 1.2% of the points outside the range of —1.2
to 1.2, whereas the ratio of median curve has 24% and 18% outside of the
same ranges.
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and its log transformed equivalent,

b — x| 2p — x|
plG(x) = a exp b — CXp b .

[4]

We also used this method to estimate errors for the 4 X 1,152
slide, and found that the spread in the measured values of the
spots are consistent with the calculated errors (Table 1, Fig. 3).
An important technical requirement to use this approach is
the ability to have good registration (at the level of much less
than a single pixel) between the images in the two different
colors. This method is robust, in the sense that it is not dependent
on the underlying data following any particular statistical
distribution.

Larger spots give more accurate measurements than smaller
spots when using the median of ratios. The standard error in the
median is roughly inversely proportional to the square root of the
number of independent measurements, as would be true for any
measurement with a Gaussian distribution. A large spot that has
twice the diameter of a small spot will have four times the
number of pixels when using the same scanner resolution. The
error in the measurement will be about one half as large in
the larger spot compared with the smaller spot. This follows from
general statistical principles, where the standard error in a
measurement is proportional to the square root of the number
of independent measurements made. This result has obvious
implications for tradeoffs in measurement accuracy versus array
density, and should be considered during array and reader
design.

Many methods of analyzing-large scale expression patterns
rely on quantitative measurements of transcript levels to “clus-
ter” different genes into groups (6, 7). Many clustering algo-
rithms use a maximum likelihood estimator that should be
chosen to reflect the statistics of the underlying data. It is crucial
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to understand the distribution of the measured data when
choosing such an estimator, especially if that distribution has
long tails. Finally, an error measurement of transcript levels
provides a parameter that can be used with clustering algorithms
to estimate confidence levels for membership of a transcript in
a cluster.

Some methods of analyzing large scale expression patterns do
not rely on measurements of quantitative levels of expression,
but rather on whether the transcript is absent/present (8) or
whether the expression level of a gene is significantly higher or
lower in two different populations of cells. In these cases, there
are more sensitive ways to assess the significance of the signal
than by measuring the ratios with error bars. One such method
is to compute a P value corresponding to the hypothesis that the
mean values of the spots represent identical or distinct expres-
sion levels (9).

Experimental errors can be classified as two different types:
random and systematic. We have examined the random error in
a single DNA microarray experiment. The goal here is to
quantify the statistical random errors inherent in the experiment
and provide a quantitative measure of quality so that experi-
mental systematic errors can be evaluated and optimized.

Conclusion

We have outlined a method of obtaining reliable error estimates
for spotted DNA microarray measurements. Ratios accompa-
nied by error estimates will allow more meaningful interpreta-
tions of single chip data, better comparisons of data across
multiple experiments, and more consistent results from cluster-
ing algorithms.
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